Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(11): e0143137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26580551

RESUMO

Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles.


Assuntos
Plaquetas/química , Membrana Celular/química , Micropartículas Derivadas de Células/química , Megacariócitos/química , Inibidor da Proteína C/química , Proteína C/antagonistas & inibidores , Adulto , Plaquetas/citologia , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , Feminino , Heparina/química , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Células Jurkat , Masculino , Megacariócitos/citologia , Pessoa de Meia-Idade , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fator Plaquetário 3/química , Fator Plaquetário 3/metabolismo , Ligação Proteica , Proteína C/metabolismo , Inibidor da Proteína C/metabolismo , Trombina/química , Trombina/metabolismo
2.
PLoS One ; 9(7): e101794, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000564

RESUMO

Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10-30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal.


Assuntos
Apoptose , Plaquetas/fisiologia , Fagocitose , Fosfatidilserinas/metabolismo , Ativação Plaquetária , Inibidor da Proteína C/metabolismo , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Microesferas , Fagocitose/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Poliestirenos/química , Poliestirenos/metabolismo , Ligação Proteica , Transporte Proteico/efeitos dos fármacos
3.
Curr Biol ; 17(21): 1903-7, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17964165

RESUMO

An ant supercolony is a very large entity with very many queens. Although normal colonies of small extent and few queens remain distinct, a supercolony is integrated harmoniously over a large area [1, 2]. The lack of aggression is advantageous: Aggression is costly, involving direct and indirect losses and recognition errors [3, 4]. Indeed, supercolonial ants are among the ecologically most successful organisms [5-7]. But how supercolonies arise remains mysterious [1, 2, 8]. Suggestions include that reduced within-colony relatedness or reduced self-nonself discrimination would foster supercolony formation [1, 2, 5, 7, 9-12]. However, one risks confusing correlation and causality in deducing the evolution from distinct colonies to supercolonies when observing established supercolonies. It might help to follow up observations of another lack of aggression, that between single-queened colonies in some ant species. We show that the single-queened Lasius austriacus lacks aggression between colonies and occasionally integrates workers across colonies but maintains high within-colony relatedness and self-nonself discrimination. Provided that the ecological framework permits, reduced aggression might prove adaptive for any ant colony irrespective of within-colony relatedness. Abandoning aggression while maintaining discrimination might be a first stage in supercolony formation. This adds to the emphasis of ecology as central to the evolution of cooperation in general [13].


Assuntos
Formigas/genética , Ecossistema , Agressão , Animais , Formigas/fisiologia , Evolução Biológica , Feminino , Genótipo , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...